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I.

INTRODUCT ION

This technical report, which is the last in a series, covers new

results in linear restoration of blurred photon-limited images. Our most

recent previous technical report [1] is highly recommended as background

for this report, and we shall freely call upon results derived there.

However, this report does contain a brief review (together with some

minor corrections) of the earlier work.

For the purposes of motivation, we should mention at the start why

we are interested in space-variant linear restoration of degraded images.

Compensated imaging systems correct for atmospheric blur over only a fi-~

as a

III,
that
tion

with

II.

nite field (the so-called "isoplanatic region'). If objects larger than
this field are encountered, the blur present in the image will be markedly
space-variant. Furthermore, while conventional linear restoration theor-
ies assume stationary object statistics, in practice, real ensembles of
objects are usually nonstationary in one or more attributes. Both space-

variant blurs and nonstationary objects 18ad to space-variant filtering

desired approach.

Section II to follow contains the review mentioned above. In Section
we describe an algorithm for finding a linear restoration filter
maximizes the particular image quality criterion adopted here. Sec-
IV gives the results of a study of restoring photon-limited images

linear shift-variant restoration filters.

EQUATIONS FOR THE DISCRETE SPACE~-VARIANT RESTORATION PROBLEM

As stated above, in this section we give a review of the discrete

notation and equations used in our study of space-variant restoration

b A




of photon-limited images. During this review, we will show some correc-

tions to the equations given in Section IV of refercnce 1.

(a) Discrete Notation

The physical process of the formation of an image is modeled by a
linear matrix expression. The continuous object radiance distribution is
represented by a column vector o whose elements are Mo equally spaced
samples. The use of lexicographic ordering to represent two-dimensional
object and image distributions is discussed in reference 1.

The formation of an image from the object is modeled by the equation

= Bl o . 1)

=

Here, the image intensity distribution is represented by the M1 elements

of the column vector i. The blur matrix [B] consists of Mi samples

of each of the Mo impulse responses of the imaging-blurring system. In

general, the number of samples of the image M, might not equal the num-

i
ber of samples of the object Mo.

The detected image vector d consists of, again in general, Md ele-

ments, each of which represents the photocount from one element of a dis-

crete array of photodetectors. In our work, we have assumed that M =M

d i

and that the nth elenent dn of d depends directly on only the nth

element 1n of i. In fact, we model the image detection process by

assuming that dn is Poisson distributed with mean rate

% = OEEy (2)
n - n
hy




where A 1is iie area of a detector element, and T 1is the observation
interval.

The detected image d is restored by linear filtering with the
restoration filter [H]. This filter will be chosen to make the restored
image r, given by

r=mld, (3)

as "close" as possible to an "ideally filtered" object

A

=61, . @)

102

Here, [§1 is an M5 X M matrix of samples of the impulse response of
an ideal filter. The normalization indicated by ”~ was defined in refer-

ence 1. In general, therefore, the filter [H] is of dimension MS}KM&'

(b) Minimum Mean-Squared-Error Filter

One method of making the restored image r ‘"close" to the ideally
filtered image § is to minimize the mean-squared value of the error

column vector € given by
o A
_€_=9_-£=[S]2-[H]g. (5)

Thus, we wish to minimize the quantity

& = E{Ets} = E{Tr(ggt)} (6)

where t signifies matrix transpose, E 1is the statistical expectation
operator, and Tr( ) is the matrix trace operation.
Referring to rcference 1 for the derivation of the following re-

sults, the mean-squarcd-error, in general, is given by
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& = Tr |[H](N (8]

- 2kN2 (8] (% 10815 m1* + K2N2 8] (§°][§]t : (7

An alternate form of the mean-squared-error actually used in calculations

is

e

6 = Trik N2 (8] (% 1681° + & (oo (]

101>

+ N[B] [5201[3]".. - 2kN[S] [g“zo]u?]t . O (8)

The appropriate minimum mean-squared-error filter can be found in the

literature [2] and is given by

-1

~

-~ v At
[Hms}:] = kN[s][mo][B] B]

0 b

1o

+ NIB] (&oltﬁl" ; (9)

This filter will, in general, be space variant and nonsquare, depending
A A - v
on the properties and sizes of [S], [B], o, and [QB].

In order to study the performance of a given restoration filter,

some measurc of image quality must be defined. We have chosen to define

image quality Q by




A3
Q=6

where & 1is the mean-squared-error and 4 is the expected signal en-

(10)

ergy at the output given by
s & Forr (mm?] [éo](ﬁ]"m]t) ; (11)

Substitution of the minimum mean-squared-error filter [HMMSE] into one
of the exprcssions for mean-squared-error, Eq. (7) or (8), yields the
expression for the minimum possible mean-squared-error with linear res-
toration

\\\\ 0

& . = kN 7r|8) % 1{r - B1° 81

o

-1
+ﬁ[§][§o][ﬁ]t L§][§o] i1t | . 12)

/

(In reference 1, the corresponding equation, Eq. (36), has a misplaced
parenthesis.) In our computations, the alternative form

2-92 Dh P - 1 AV At
Gpin = K N Tr <[o][920] [s1” - 5 [HMMSE][B] [Qo] [s1 ) 13)

for the minimum mean-squared-error has been used. (The corresponding
Eq. (37) in reference 1 has an omission. Note here that the form of Eq.
(38) in reference 1 used for comparison to the continuous case is cor-
reet only if all matrices in the expression are square, i.e., if M =
M, = MS' The more generally valid expression, requiring only Mi = ME’

i

is




™ TR Y.

-1
0
2-2 AV At \ AN - AV At \ A
Gpin = KN Tr ([STIR 1(S] B8] o + N[BI[R 1(B] (8]
| o

min \ G \

[on

(14)
which in the square matrix case reduces to Eq. (38), reference 1.)
Thus, we have several forms for the denominator of the expression

for Q. For the numerator, we substitute Eq. (9) into Eq. (11), yielding

=i

~

- v At
+ N[BI[R 1[B]

101>

4 = k28 (8] (% 1081° 8]

MMSE
0 \\\\

=]

101

. B8] rsio] Bt 8]

0 ey

+ﬁ[§][§z°][§]t [§][§°][§]t

(15)

(In reference 1, Eq. (43) contains an exponent\error and Eq. (44) is more

correctly written

_ “MMSE

MMSE ~ &
min

(16)

for the minimum mean-squared-error Q.)
As we show in Section III, we can improve on the performance pre-
dicted by Eq. (16). Specifically, we can do better than the minimum

mean-squared-error filter by using a filter which maximizes the quality

factor Q.
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ITI. MAXIMUM IMAGE QUALITY FILTER

Equation (16) is not the maximum obtaingble Q using linear res-
toration techniques. This is true because in minimizing the mean-squared-
error we are not necessarily maximizing the ratio of signal to mean-
squared error. Thus, we would like to find the filter [H.._ ] which

MQ

maximizes the image quality

(10)

o
>
onlo

By following a procedure similar to that used for finding the minimum
mean-squared-error filter (see Appendix A), two necessary conditions are

found for any [HMQ] producing a local maximum in Q:

? = p N ARk NPre1fe1ra 1651t
| 5 Tr(Z[HMQJ (8105, 161 (61%) Tr(2[HMQ][D][G] - 2 [61 (B (%, 1051%)

4 A &
a7
and
= ™~ AL 2 ¥ A T t
2NQ . Tr | [G] B] o T NBIL o] 81" | [G]
o R max
- 3 <0
(18)

for all matrices [G], where in (17) expressions (7) and (11) have been
used and

e 0

(p] = 81

0 e

l1on

+ NIBI [s‘f’{o'] B . (19)
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By rearranging terms, we find that condition (17) will be satisfied

if and only if

-1

S g Q-1

By, = KNSR 167" B)o |+ N ) @1 1B1° (20)
4 N nax

and condition (18) if and only if (20) and

16 |+ REIXIE > (o] (21)

are satisfied, where [0] 1is a matrix of all zero elements. The ine-
quality (21), for our purposes, is simply an added condition which must
be satisfied by any Qmax satisfying (20). It is no help to us in
finding our maximum @ filter. Tote that, if the factor (Q -1)/Q

max max
is regarded as a simple constant, the maximum Q filter differs from
the minimum mean-squared-error filter only by this simple internal pa-
rameter.

Equation (20) is mot a true solution for the elusive maximum Q
filter since it is necessary to know a priori the value of Qmax' and
in our studies we need [H_] to find Q . 1In a real image restora-

MQ max
tion system, however, this might not be a problem, as [HMQ] might, for
example, be determined experimentally from the minimum mean-squared-error
j 5 -1 .
filter by manually adjusting the factor (Qmax )/Qmax It should be
mentioned here that, not only is it difficult to find a filter satisfying
(20) and (21), but these are only necessary conditions for the maximum

Q filter. These conditions guarantec only a local maximum in the Q-[H]

space.

dsid il
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For the purposes of this study we have developed a procedure for

finding the locally maximum @ filter [qul. The procedure may be

described as solving the following pair of recursive equations:

-1
0
1 AV At A 2 —Qi—l-l AV At
— [}{1] = [S1[x 1[B] R] o + N|—— [B1[x 1[B]
KN = K Q. L
0 \\\\
(22)
and
1 ALy oAt ] t
Tr{— [, 1([B Bl —
o r(kN [ i ](5&01[ ] R [Hi] )

rr(811% 1681° + i(—% . 10] - 20810% J[ii]“) I

(23)

The solution is reached by performing these steps:

(1) Choose an initial value Q0 by some method. (For this
Qo, one might use the value of Q obtained by using
the space-variant or space-invariant minimum mean-
squared-error filter, or one might try several values
for Qo and choose that value which produces the larg-
est Ql' Our experience is that, in most cases, a value

of Qo slightly more than unity works well.)

(2) Find [H1] from Eq. (22).
(3) Use mll to compute Q; using Eq. (23).

(4) Repeat steps 2 and 3 always using the latest Qi for the

next cycle.
(5) Stop when the values of Qi are no longer increasing.

(6) Check to insurc a maximum rather than an inflection point
by entering Eqs. (22) and (23) with several values of

Qi—l on both sides of the final Qi from step 4.

9




We have “ound, using this procedure, solutions for the maximum Q
filter much more easily than we had cxpected when the procedure was first
proposed. Also, although we have no guarantee that we have found the
global maximum in the Q-[H] space, we have tested a wide range of val-
ues of the faétor (Qo-l)/Qo and have never fousd a Q higher than that

obtained from the maximum Q procedure.

IV. LINEAR SPACE-VARIANT FILTERING RESULTS

In this section, we present results of computer analysis of restored
image quality possible when using linear space-variant restoration tech-
niques. We have used both minimum-mean-squared-error and maximum-Q-algo-
rithm filters. We begin by describing the notation and some of the object

statistics and blur types used through Section IV,

(a) Computation Parameters

In our computer studies, we have treated several types of nonsta-
tionary objects and space-variant blurs. We usually allow either the
object statistics or the blur impulse response to be position dependent,
but not both at once. later, we will define the exact forms used for
those statistics and impulse responses. At this point, we shall describe
some general assumptions and define the types of space-invariant blur
and stationary object used throughout.

First, in all cases, we have restricted ourselves to one-dimensional
objects. During the period covered by this contract, the speed and stor-
age capabilities of the computer at our disposal were never sufficiently
large to allow two-dimensional image processing. In fact, in nearly all

of our studies, we restricted the image and object sizes to 35 pixels.

10
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In only a few cases did we allow object and image sizes to grow to 49
pixels. In ihese cases, we were checking for object-dependent changes
in image quality due to edge effect errors. As the object size grew,
all the Q curves shifted upward slightly but always by nearly the same
amount .

As we stated in Section II, the sizes of the object, classical in-~-
tensity image, detected image, and ideal image, Mo’ Mi’ Md’ and Mg,
respectively, will, in general, be different. This might be true due to
the physical realities of the imaging system or because it might be ad-
vantageous to choose them so. If, for instance, the impulse responses
of the actual blur and ideal blur are assumed to be spatially limited,
the sizes of the vectors and matrices are often chosen to retain all
available information without suffering any unneeded storage penalty.

In our studies, we have assumed more "realistic" blurs which are
band limited rather than space limited. These must necessarily be arti-
ficially truncated at a rather arbitrary point, especially with our
rather severe space limitations. We therefore have assumed that all
vectors have the same dimension and that all matrices are square, that

is, that

M =M, =M, =M_=M (24)

where M 1is the assumed matrix and vector dimension. As stated above,
for all cases presented here, M = 35.

Briefly, with respect to notation, if vector a has elements ai,
then the index i is assumed to run from 1 to M. If matrix (Al has
elements [A]ii' then the index i runs along a column and j runs

along a row from 1 to M.

11
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2
The idea! blur matrix used in all our calculations is a sinc
2
function sampled at the Nyquist rate. This sinc impulse respcense
J corresponds to a diffraction-limited one-dimensional aperture function.

Explicitly, the ideal filter matrix elements are

2
_ ([sin (x(i - j)/2)
! ISIij 3 ( n(i - j)/2 ) y (25)

This equation is more simply written

1 i=3
s1,. ={o0 i~-3j evenand i # 3 . (26)
ij i 2
(n(i -J)) 1= 4 ndd

In all our calculations, the blur used is a Gaussian blur with a

possibly position-dependent width. Explicitly, it is

1 'j'[gl)

Bl , =——m——e

RRTL)

where [x] means the smallest integer >x and w(x) =W , a constant,

(27)

whenever a space-invariant blur is specified. The form of w(x) for a
space-variant blur will be described later.

In all our work here, for both stationary and nonstationary object
ensembles, we assume the covariance matrix is diagonal. That is, we as-
sume the object variation is uncorrelated from point-to-point in the ob-
Ject. For our stationary object ensembles, the autocorrelation matrix
is

12
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2-2
Nt (28)

1

=)

[R] = o l1) + Kk
o) o

2
where o  1is the variance of the object, [1] is the identity matrix,

and l is a vector all of whose elements are unity. We have two degrees

of freedom here, the variance and the flux level, and in practice we
specify N and the object squared-mean to variance ratio A at the

center, defined by

aAQ T (29)

i where 51 is the 1th element of the mean object vector and [ﬂ;] is the

object covariance matrix.

The constant k is defined by

x & BY (30) |

where bo is the net energy transmittance of the imaging process. This
constant k has not been specified explicitly in our calculations for
two reasons. First, in all our results, we present image quality plotted
versus the mean number of photoevents per image rather than versus the
total mean object brightness. Thus, we have no need to translate total
brightness into total photoevents by using k. Second, we have implic-

itly assumed that all quantities in Eq. (30) are deterministic and known

r a priori. Thus, the restoration filter can compensate for the effects

of the constant k and effectively remove k from our results.

13
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(b) Space-Variant Blur

Here, we show results of restored image quality for situaticns hav-
ing stationary object ensembles and space-variant blurs. We use minimum
mean-squared-error and maximum Q algorithm restoration filters of both
‘the space-invariant ard space-variant types.

The space-variant blur we use is that of Eq. (27) with

[+ - [4]]

w(j) = LR (We = WE) — (31)

H

where We and We are the widths at the center and edge, respectively.
A parabolic width function was also tested, and the results were very

similar to those presented here.

—~

-

Figure 1 shows Q vs log10 N for several images restored with
minimum mean-squared-error filters. In part Ya), the central object
mean-to-variance ratio A 1is 1 and, in (b), A is 20. In both parts,
curves are shown for: (1) a space-invariant blur with Wb = 8 and with
its corresponding space-invariant restoration filter; (2) a slightly
space-variant blur with wc =8 and we==10 with a space-variant res-
toration filter; and (3) a severely space-variant blur of Wc = 8 and
W_ = 16 also with a space-variant restoration filter. These curves
represent the best one can do with linear minimum mean-squared-error
restoration applied to these particular blurs. The Q values decrease,

progressing from (1) through (3) in each part because, for a given ﬁ,

the filter cannot restore an image as well for larger average blurs.

14
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(a)

T WS Vv ¢ — e wo

3

A

2 & 6 8 10
109,49 N

3

Fig. 1. Q vs 1logqg N with minimum mean-squared-error
filters. Different A values: (a) A=1; (b) A= 20.
Different blurs: (1) space invariant, W, =8; (2) space
variant, W, =8 and W, = 10; (3) space variant,

W, =8, W =16.
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In Fig. 2, Q 1is plotted for those same blurs of Fig. 1, but the
images have lLiecen restored using a space-invariant minimum mean-squared-
error filter with wb = 8. As in Fig. 1, part (a) has A =1 while
part (b) has A = 20. The most obvious feature of this figure is the
greatly reduced restored image quality resulting when the space-invari-
ant filters are used with space-variant blurs. While the image quality
obtained, when the filter-blur type and width are matched to the type
and width of the blur, increases significantly with increasing i, the
image quality for unmatched filters actually approaches an asymptote.

More generally, as can be seen from Fig. 2 and other figures to
follow, we find that, whenever the filter blur does not match the actual
blur, the image quality is asymptotic. For the square, symmetric blur

matrices used in our calculations, this asymptote is approximately

A v A A 2 v -1 A 2 v
Tr<([sf][$of1[8f]([3f1 {skofl) rm> IEROJ>

ALA A A A2 v =1 2 v v 2
Tr <(([s1mf1 . [sf][B]) (8,1 [mof]) m]) (%163 ) )

(32)

where the subscript f indicates matrices used to form the particular
A A
filter used. In all our calculations, we choose [Sf] = [S]. This will

A
always be possible because the [S] used everywhere was our choice in

A A~
the beginning. Using this choice of [Sf] and assuming [Bf] and

[io] have inverses, the asymptote (32) becomes
(518,17 @ 2 &
Tr | ([s1(B, [B]) [SRO

5 :
Tr <([§1 (1 - ) r.r?ffz[f?]) m01>

(33)

15
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(a)

10

02 4 6 8 10
log,q N

Fig. 2. Q for restoration with a space-invariant minimum
mean-squared-error filter. Two A values: (a) A=1;
(b) A =20, Different blurs: (1) space invariant, Wy = 8;
(2) space variant, We = 8 and We = 10; (3) space vari-
ant, Wc = Gy We = 16,

17
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The most important factor in this expression is the "blur difference"
[gf]-[gl. if this difference is large, the value of the asymptote
approaches unity.

In Fig. 3, Q 1is shown for a severely space-variant blur of wc=:8
and we = 16. In part (a), A=1, and in (b), A = 20. This blurred
image has been restored using several space-variant and space-invariant
filters. Curves are shown for minimum mean-squared-error filters matched
both to the space-variant blur and to space-invariant blurs of widths
Wb =4, 8, and 12. Points indicated by small circles are for restoration
with a maximum Q algorithm filter. Crosses show restoration with a
space-invariant maximum Q algorithm filter with wb = 8. There are
only a few of these points plotted because the algorithm does not guar-
antee a maximum unless it is allowed to be space variant. Here, as in
most cases we have encountered, the-maximum Q value falls approximately
one unit above the minimum mean-squared-error filter value of Q.

An interesting phenomenon appears in part (a). The space-invariant
minimum mean-squared-error filter has performed slightly better than the
space-variant minimum mean-squared-error filter for small N. Later, in
Fig. 5, we shall present an even more pronounced example of this phenom-
enon. It is not as disconcerting as it might seem to see the space-in-
variant filter perform better than the space-variant filter since, as we
mentioned in Section III, minimizing the mean-squared-error does not
necessarily maximize the image quality Q. In a sense, this "better
performance” of the space-invariant filter is just an accident. By
chance, the mismatched blur has introduced an approximation to the fac-
tor (Q-1)/Q of the maximum-Q-algorithm filter. This mismatch could

Just as well have decrcased the effectiveness of the filter.

18
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(a)

2 4 6 8 10
teg,q N

Fig. 3. Q for space-variant, W, =8 and Wg=16, blur.

Two A values: (a) A=1; (b) A= 20. Several minimum

mean-squared-error filters: (1) space variant, W_ = 8
and W, = 16; (2) space invariant, W, = 4; (3) space
invariant, W, = 8; (4) space invariant, W, = 12. Two
maximum-Q-algorithm filters: (O) space variant, W,=38,
We = 16; (+) space invariant, W, = 8.

19




Figure 4 shows Q for a slightly space-variant blur with WC = &
and We = 10, with both space-variant filtering and space-invariant
LA 8 filtering. Part (a) is for A =1, and part (b) is for A=20.
Circles are for maximum Q algorithm filtering. Note here that the
space~invariant filter results are asymptotic to a different level for
large N than are the severely space-variant blur results. Two other
features come to light if Fig. 4 is compared to Fig. 3. First, as seen
in Figs. 1 and 2, the gecneral performance here is better than for the
severely space-variant biur. Second, the blur mismatch here is not suf-
ficiently large to allow the space-invariant minimum mean-squared-error

filter to produce better image quality than the space-variant minimum

mean-squared-~error filter.

]

Figure 5 gives Q for a space-variant blur with wc 16 and

w = 32. As before, part (a) has A =1, and (b) has A = 20, Curves

e =

are shown for a matched space-variant filter and space-invariant filters
matched to wb =12, 16, 24, and 32. Small‘circles show filtering with
a maximum Q algorithm filter. Note carefully that this figure has a
different scale than all others in Section IV. Here, the severity of
the blur lowers the curves well below those of the previous figures. As
mentioned above, in Fig. 5(a) we have a dramatic example of the space-
invariant minimum mean-squared-error filters performing better than the
space-variant minimum mean-squared-error filter. Here, the severe mis~
match of the blur allows good accidental approximation of the maximum Q
filter over a range of N. In addition, the mismatch is enough to force
the space-invariant filters' performances to the large N asymptote's

minimum value of unity.
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Fig. 4. Q - for space-variant, Wc=8 and Wg =10, blur.
Two A values: (a) A=1; (b) A= 20. Several minimum
mean-squared-error filters: (1) space variant, W, = 8
and We = 10; (2) space invariant, W, = 8. Also, (O)
maximum Q filter.
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Fig. 5. Q for space-variant, W,=16 and W, =32,
Two A values: (a) A=1; (b) A= 20.
mean-squared-error filters: (1) space variant, Ws = 16
and Wa = 32; (2) space invariant, W = 12; (3) space
invariant, W, = 16; (4) space invariant, W, = 24; (5)
space invariant, Wp = 32. (O) Maximum Q filtering.

blur.
Several minimum
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(c) Nonstationary Object

Here, we give resulting image quality when nonstationary object en-
sembles are blurred with a space-invariant blur. We study the full range
of minimum mean-squared-error and maximum @ algorithm filters, both
space-variant and space-invariant cases.

We consider two different contributions to the nonstationary sta- |
tistics of the object ensemble: the mean and the covariance. We allow
both of these to be position dependent, individually and together. When

we indicate nonstationary mean, we are using é of the form

S e

where wo is an object width parameter and

1 - x| for [x|<1
Alx) = . (35)
0 for |x|>1

For those cases where we use a nonstationary covariance, the form is

0 for i #j
71, = (36)
> ght - [g]
AN |\——r— for 1= 3
W°/2

In all of Section IV(c), the blur is space invariant with Wb = 8,
Figure 6 shows Q for three different nonstationary object ensem-

bles with A = 1. The upper three curves are restored using the appro-

priate space-variant minimum mcan-squared-error filters. The lower three

23
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Fig. 6. Q vs logpg N for different nonstationary object statistics:
(1) & (4) nonstationary mean; (2) & (5) nonstationary covariance; (3) &
(6) nonstationary mean and covariance. Different filters used are:
(1), (2), & (3) space-variant minimum mean-squared error filters; (4),
(5), & (6) space-invariant minimum mean-squared-error filters.
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Fig. 7. Q for differcnt nonstationary object statistics: (1) nonsta-

tionary mean; (2) nonstationary covariance; (3) nonstationary mean
and covariance.
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curves cor%Fspond to restorations obtained using space-invariant minimum

*

mean-square%-error filters. The three curves in each group include an
object ensemble with: (1) only the mean nonstationary, (2) with only
the variance nonstationary, and (3) with both the mean and variance non-
stationary. As can be seen, there is little difference for the three
types of nonstationarity. The most pronounced feature of the curves
here is the gap between the group of three space-invariant filter curves.
The nonstationary mean curve is almost as high as the space-variant

filter curves. The two curves showing space-invariant filters used with

nonstationary object variances show definitely lower performance.

Figure 7 has curves plotted for the maximum Q filter restoring
the three types of nonstationarity listed for Fig. 6. Here, there is
even less difference between the performances under different object
statistics. The maximum Q algorithm seems to compensate optimally
for each of the different object ensembles. Again, the maximum value
of Q 1is approximately one unit higher than thg minimum mean-squared-
error value.

In Fig. 8, Q 1is plotted for the mean-only nonstationarity. Part
(a) has A =1, and (b) has A = 20. The blurred images in each part
have been restored using the maximum Q filter and the space-variant
and space-invariant minimum mean-squared-error filters. It can be seen
from this figure that there is very little difference in performance
between the space-variant and space-~invariant minimum mean-squared-error
filters. This difference does not depend significantly on the value of
the object center mean-to-variance ratio A, whereas, in earlier figures
of space-variant blurs, the loss in performance suffered, when using the

space-invariant filter, depended strongly on the value of A. As before,
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Fig. 8. Q for nonstationary object mean. Two A values:
(a) A=1; (b) A= 20, Filters used: (1) minimum mean-
squared-error space variant; (2) minimum mean-squared-er-
ror spacc invariant; (Q) maximum Q filter.
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the maximum value of Q 1is relatively casy to compute and parallels the
minimum mean-squared-crror Q. Something not seen in this figure is the
extreme difficulty in computing a space-invariant maximum-Q-algorithm
filter when the variance 1ls stationary.

Figure 9 shows Q plotted for images restored with four filters.
These are the space-variant and space-~invariant minimum mean-squared-
error filters, the maximum Q filter, and the filter derived using the
maximum Q algorithm with a space~invariant filter. Part (a) has vari-
ance-only nonstationary and part (b) has mean and variance nonstationary.
Note here that the crosses, which are the results of space-invariant fil-
tering, show quality comparable to the two space~variant filters. This
indicates a computationally workable method of doing useful filtering on
nonstationary blurred image ensembles. Here, the maximum Q filter and
space~invariant maximum-~Q-algorithm filter are both easy to calculate
and both parallel their respective minimum mean-squared-error filters in
performance.

A further look at Fig. 9 reveals two related points. First, as might
be expected, the addition of the nonstationary mean condition of Fig. 8
to the nonstationary variance of Fig. 9(a) leads to a drop in both the
maximum Q and the minimum mean-squared-error Q. The levels of Q for
the space~invariant maximum-Q-algorithm filter and the minimum mean-
squared~error filter are increased by allowing the mean to become non-
stationary. This is probably due to "cancelling" errors, another acci-

dental improvement.
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Fig. 9. Q for two object statistics: (a) nonstationary
covariance; (b) nonstatiomary mean and covariance. Dif-
ferent filters used: (1) minimum mean-squared-error space
variant; (2) minimum mean-squared-error space invariant;
(©) maximum Q; (+) maximum-Q-algorithm space invariant.
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(d) Filter Error Analysis

i Often, comments are made to the effect that there are many theoret-
ically good ways to restore degraded images, but they often do not work
well due to one's inability to estimate the object statistics and blur
impulse responses accurately. We have therefore done the following
short study concerning the performance of our filters when they are
derived from incorrect statistical or blur response assumptions.

The curves of Fig. 10 show Q for a space-variant blur with wc=8
and we = 16. The object ensemble is stationary. Part (a) shows the
performance of a space-variant minimum mean-squared-error filter, and
part (b) is that for a maximum Q algorithm filter. The three curves
in each part include restoration with a properly constructed filter and
two restorations with filters constructed with #*10% errors in both Wc
and We.

In Figs. 11 and 12, a space-invariant blur, Wb = 8, 1is used with
an object nonstationary in both mean and variance. In both figures, the
filters used are, as in Fig. 10, one accurate filter and one filter with
approximately 10% errors in some parameter. In Fig. 11, the error fil-

ters have a *9% error in the object width W . In Fig. 12, there is a

+10% error in the blur width W -
. As can be seen from these figures, an approximately 10% error in
the estimated object statistics produces only a few percent reduction in

image quality, whereas roughly the same error in estimated blur produces,

at least for large ﬁ,- a dramatic loss of quality. The basic reason for
this dramatic difference is as follows. An error in object statistics

affects only the point where the "cutoff" of the Wicner filter occurs.
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Fig. 10.° Q@ for stationary object and space-variant blur,
We = 8 and Wy = 16, for mismatched restoration filter.
Part (a) minimum mean~squared-error space-variant filter,
and part (b) maximum Q filter. In both parts, filter
parameters are: (1) We = 8 and Wy = 16; (2) wc=8‘8
and W= 17.6; (3) wc 7.2 and W, = 14.4,

1}
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Fig. 11. Q for space-invariant W, = 8 blur and nonsta-
tionary object mean and covariance, W, = 34, for filter |
mismatched in object width. Part (a) space-variant mini- i
mum mean-squared-error filter, and part (b) maximum Q
filter. In both parts, filter parameters are: (1)

Wo =34; (2) Wo = 37.5; (3) Wo = 30.5, |
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Fig. 12, Q for space-variant W, = 8 blur and nonstation-
ary mean and covariance, W, = 34, for filter mismatched
in blur width. In part (a) minimum mean-squared-error
space-variant filters and part (b) maximum Q filters.

In both parts: (1) \Vb=8; 2) Wb=8.8; (3) Wb=7.2.
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This effect should be most pronounced for small N where the signal-to-

noise ratio is small. The only error this produces is either a loss of
signal or increase in noise for those spatial frequencies near the cut-
off.

An error in estimating the blur, on the other hand, means that,
when N becomes large and the Wiener filter approaches an inverse fil-
ter, one is only removing a part of the existing blur, or possibly adding
additional bur. This effect will be known to anyone familiar with in-
verse filtering techniques.

This result is somewhat encouraging, however, since, in the atmos-
pheric and compensated imaging systems of interest here, the amount of
blur present can be measured with reasonable accuracy while the object

statistics are relatively unknown a priori.
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APPENDIX A

In this appendix, we derive a set of conditions which a linear

filter must satisfy to insure at least a locally maximum value of image
in the discrete formu-

We begin with the definition of Q

quality Q.
lation
a8
where
s &% 1r (mm?] tgvaouﬁltmlt) ; @.2)
and
0
- Ao D -2 A t t
& = Tr ([H]|N [B] o + N [B1[& 1[B] ml-
0
(A.3)

- kN2 (8] (@ 1681 m1° + 8261 & 1681°

The procedure we shall follow here is to assume a form for an ar-
t. We then find

bitrary filter [H] which includes a scalar parameter
the first and second partial derivatives of Q with respect to t and

>ose appropriate conditions on these to guarantee a local maximum in
Q. In order to simplify the maximization procedure, the quantity logQ
This is permissible for Q # O

will be maximized instead of Q itself.

since the logarithm is a monotonically increasing function.
If [HMQ] is the restoration filter which produces a maximum image

quality qux’ then any arbitrary filter [H] may be written




H] = mMQ] + tigl (A.4)

where t 1is a scalar and [G] is some matrix. A necessary condition for

an extremum or point-of-inflection in Q is

d log Q
t

0 ViG] (A.5)
t=0

" . s : :
where V means "for all," and a necessary condition for a maximum is

2
-a—l%’-—g <0 vIG] . (A.6)
Jt

t=0
Beginning with condition (A.5), it is first useful to note that
log Q = log~4 - log & . A.7)

Substituting (A.4) into (A.3) and (A.2), and teking the derivative of

the logarithms gives

2F? Tr(mMQJ 3105 1614 61° + 061 (5) [E;’aom’a‘]tm]t)
1ES)

3 log Q(t) _
E ]

2rr (11, 101 [61° + (61 DIG1° - k¥ (01 3115 1661°)
MQ o

&(t)

(A.8)

where Q(*), 4(:), and &(-) indicate the values of Q, 4, and §,

respectively, with t = ¢, Letting t approach zero gives
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o 3t = 0)

d log Q(t)
ot

t=0

101 [6] - KN [G] (B[R ][s'i]t)
0 ° =0 vIG]
8(t = 0)

2Tr(ﬂ{

A.9)

This resulting condition (A.9) will be satisfied if

\AQO .-/Qmax-l ALV At -_A WV At
[HM] [B] o + N\——— | [B1[R 1[B]" | - kN[S1[X 1[B] = [0}
Q : \ “mex & °
0 \\\
(A.10)
where [0] is a matrix with all zero elements and again
r: _ 4(0)
Qmax-q('o) = 500) ° (A.11)

This analysis leads to the following expression for the maximum Q fil-
ter:

-1

.
—
100
+
2z

) e T ) B 181"
(a.12)

Here, it must be remembered that Qmax in most cases is not known with-

out first knowing [HMQ]. This filter is sure to produce a local extre-

mum or point of inflection in Q.

In order to insure a local maximum, we need condition (A.6). Taking

the derivative of (A.8) at t = 0 gives
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az log Q(t)
R

ot t=0
(200 01061Y) e (204, ) (61" - 21 (01 (51 (57,1 (51°)
640 62(0) .
(A.13)
After some manipulation, we have
\ 0
= AL 2 Qmax—l SIAL S ALt t
2N Tr |[G] [B1 o + N[BI[R 1(B]" |[G]
2 Qma.x 4 = ( Qmax o
3" log Q % o
&(0)
ot |io
Matrix . [0 13g Q
3 (exPression> < ot t=0> fAE2)

where we have recognized the last factor as the first derivative at t =0.
Finally, using (A.6) with (A.14) gives the condition
0
P \[g 2 Qmax_l-" "]["t t
NQ,. . Tr|[G] 1o + —ax—N[B][ERo B1" |(G]
0 \
- 4 .
£(0) <0 [G]
(A.15)
This condition is insured if and only if
\ 0
-1
N, W -
Blo |+ Q—m%i_' REB1L& 181° > (01 . (A.16)
x

0 N
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Thus, if conditions (A.9) and (A.15) are met, we can be assured of

a filter [qul which will produce a local maximum in Q.
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